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Abstract Pancreatic cancer (PC) remains a significant healthcare challenge due to its aggressive
nature and poor prognosis. The current gold standard of biopsies has limited diagnostic efficacy
due to various shortcomings. We propose a feasibility study for the use of a bioimpedance
biomarker to detect PC. The biomarker was evaluated in a double blind study on ex vivo
pancreases of mice: 15 K-ras;Trp53;Pdx-1-Cre, 2 K-ras;Pdx-1-Cre, and 9 wild type controls (Study
1); to determine if the biomarker can distinguish between PC and acute pancreatitis (AP), we
challenged it with 18 cerulein-induced AP and 6 saline-injected controls (Study 2). The results
from Study 1 showed 100% specificity and 94% sensitivity against histopathology outcomes; for
Study 2 all AP and saline-injected pancreases were diagnosed as non-cancerous. Regression
analysis revealed a positive correlation between biomarker and pathologically analyzed cancer
induced fibrosis (r(15)= 0.82 (p <0.001)). These findings demonstrate the potential of this
bioimpedance biomarker as a diagnostic tool for PC.

Introduction

Pancreatic cancer (PC) accounts for half a million new cases and 4.7% of the world’s cancer-related
deaths in 2020 Globocan (2020). It is considered one of the most lethal malignancies and a sig-
nificant healthcare challenge Koul et al. (2018). PC has the lowest survival rate among all known
cancers according to the American Cancer Society, due to its aggressive nature and poor prognosis
CancerStatisticsCenter (2022); Kato and Honda (2020); Young et al. (2020). This is attributed to the
difficulty in early diagnosis and to the lack of standardized guidelines in assessing suspicious pan-
creatic masses Garg and Chari (2020); Yang et al. (2021). The complex pathophysiology, together
with the lack of early diagnostic and prognostic markers are major barriers at the basis of the late
and often incurable stage diagnosis of PC. At present, there is no standard screening procedure
for early detection of PC as the currently available imaging and endoscopic modalities fail to accu-
rately detect lesions under 3 cm Kitano et al. (2019) and discern malignant from benign lesions.
There is demand for an on-site, real-time assessment device that works as a quantitative decision
support tool for the endoscopist. Amore timely and accurate diagnosis of PC would reduce revisits,
expedite treatment, and improve the current prognosis of this disease.
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To date, PC diagnosis relies on imaging modalities, including multidetector computed tomog-
raphy (MDCT), magnetic resonance imaging (MRI), and endoscopic ultrasound (EUS) Moradi and
lagaru (2020); Kato and Honda (2020); Michl et al. (2021); Zhang et al. (2018). The first modality of
choice for diagnosing PC is MDCT (Multidetector CT) Zhang et al. (2018). While generally safe and
non-invasive, contrast MDCT is accompanied by the risk of nephrotoxicity from the iodine-contrast
agent as well as radiation exposure Zhang et al. (2018). MRl is often used as a subsequent test when
there is a high suspicion of PC despite a clear CT Zhang et al. (2018). However, both CT and MRI
are not very sensitive in detecting the tumor in its initial development while still small Kitano et al.
(2019) (typically less than 3 cm) and localized Koul et al. (2018). Endoscopic ultrasound (EUS) guided
tissue acquisition is currently the gold standard for sampling pancreatic masses. Confirmation of
suspicious lesions is generally obtained via EUS guided needle biopsies, using fine-needle aspi-
ration (FNA) or fine needle biopsy (FNB) bio (??7??); Chang et al. (1997); Varadarajulu and Wallace
(2004); Michl et al. (2021); Zhang et al. (2018). EUS positions an echoendoscope transducer close to
the pancreas, allowing for high-resolution visualization of the pancreas and the surrounding struc-
tures during the procedure, which increases the chances of obtaining a representative sample of
the tumor. Hence, it is ideal for lesions smaller than 2 cm and is relatively safe Zhang et al. (2018);
Bispo et al. (2021); Shrikhande et al. (2012); Wang et al. (2013); Koul et al. (2018). Improvements in
fine needle biopsy (FNB) technologies and increased availability is further improving the diagnostic
yield of EUS guided biopsies.

With all these discussed modalities, confirmation of cancerous lesions is only accomplished
when biopsy samples are obtained and screened in an ex vivo setting by a cytopathologist. The chal-
lenges to successful biopsies arise from difficulties in physically locating the lesions, inter-observer
variability in identifying and grading the lesions, and low diagnostic yield due to insufficient integrity
or size of the samples. Additionally, misdiagnosis of tissues may result from pancreatitis, necro-
sis, or diffusely infiltrating carcinoma Chang et al. (1997); Varadarajulu and Wallace (2004); DeWitt
et al. (2004); King et al. (2022); Yamashita et al. (2020); Bhutani et al. (2004). In the pancreatobiliary
tract, indeterminate structures often present a diagnostic challenge in differentiating benign from
malignant tissues Bowlus et al. (2016), leading to multiple procedures that cause undue stress to
patients and additional costs. EUS-FNA or EUS-FNB with cytologic rapid on-site evaluation (ROSE)
has been introduced as an efficient diagnostic modality for evaluation of solid pancreatic lesions.
ROSE has advantages of providing timely feedback on sample adequacy and optimizing the num-
ber of needle passes performed and most of all it may increase the diagnosticyield, since malignant
cells that are often detected during later FNA passes would otherwise be missed if tissue sampling
stopped prematurely Koul et al. (2018). One study revealed that EUS-FNB alone had a significantly
lower diagnostic accuracy than EUS-FNB and ROSE (80.7% vs 93.1%, P =.001), thus suggesting a po-
tential benefit of ROSE during these procedures de Moura et al. (2020). The restricted availability of
ROSE and consequently, the limited accuracy of EUS-FNA or EUS-FNB in the absence of ROSE might
have constrained widespread utilization of EUS-guided sampling globally. Finally, these modalities
are implemented when there is already a high suspicion of PC, by which time cancer tends towards
its advanced stages, limiting curative opportunities.

Given the limitations of the current clinical standard for PC diagnosis, multiple research groups
are studying advanced methods to improve the diagnostic process for PC. Some newly developed
technologies focus on assessing biopsy sample adequacy and cell viability on site right after the
samples are collected Pritchett et al. (2022); Duke et al. (2022). These methods need a small
amount of specimens for rapid diagnosis and provide indication of the quality of the initial sampling
before going for pathology or information to assess if additional samples are needed to be biop-
sied for a successful pathology, issuing a preliminary diagnosis in a shorter time than traditional
approaches Pritchett et al. (2022); Duke et al. (2022). These technologies are based on different
principles. Ambient mass spectroscopy enables controlled delivery of a discrete water droplet to
a tissue surface for efficient extraction of biomolecules, which is then delivered for analysis Zhang
et al. (2017); Lu et al. (2020); optical imaging techniques able to generate images reminiscent of his-
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tology without any tissue processing Thouvenin et al. (2021). Finally, there is an automatic method
of sample preparation to enhance the evaluation and detection of cancer Pritchett et al. (2022);
Duke et al. (2022). Though these techniques are real-time and offer a rapid and nondestructive
diagnosis of cancer tissues, they are characterized by some limitations, such as high cost, low reso-
lution Sans et al. (2019); Jain et al. (2015), and the potential of modifying the sample before pathol-
ogy assessment.Therefore, there is a need for a real-time tool that can evaluate cancer presence
in biopsies without affecting the sample, and requires fewer cytology and histology specimens
prepared and submitted, decreasing the administrative costs.

In this paper, the authors propose a feasibility study for the use of a novel bioimpedance based
biomarker - the Cole Relaxation Frequency (CRF) - to detect PC. We have previously shown The CRF
to quantitatively detect cancer in breast, skin, and lung tissues Gregory et al. (2012); Svoboda et al.
(2018); Bogdanowicz et al. (2022); Guidetti et al. (2022). The aim of this pilot study is to determine
if the CRF based biomarker can detect PC and also discern pancreatitis from PC in the genetically
modified KPC and KC mouse model, acute pancreatitis mouse model and wild type controls. These
animal models spontaneously and progressively develop PC allowing us to correlate the biomarker
values with the lesions as they develop from precancerous to malignancy. The KPC mouse is an
established and clinically relevant model of PC which develops many key features observed in hu-
man PC Hu et al. (2019); Renz et al. (2018); Niknafs et al. (2019); this work may lay the foundation
towards understanding the potential for CRF to inform on cancer stages in humans. Specifically,
the biomarker was evaluated in a double blind study on ex vivo pancreases of mice. Two studies
were run to determine if the biomarker could discern between K-ras;Trp53;Pdx-1-Cre, 2 K-ras;Pdx-
1-Cre, and 9 wild type controls and between acute pancreatitis (AP) and PC by adding to the anal-
ysis cerulein-induced AP and saline-injected mice. The device conducted a spectral bioimpedance
measurement for CRF biomarker computation. CRF based cancer determinations were compared
against histopathology outcomes to calculate specificity and sensitivity. These findings demon-
strate the potential of this bioimpedance biomarker as a diagnostic tool for PC. A future imple-
mentation of this technology into a digital version of ROSE device would allow the widespread use
of ROSE after EUS-FNAs and EUS-FNBs at accessible costs.

Results

In this study, we evaluated the bioimpedance based biomarker to detect PC in genetically modified
KPC and KC mouse models, acute pancreatitis mouse model and wild type controls. The KPC mouse
model is one of the most used models to evaluate pancreatic ductal adenocarcinoma (PDAC) due
to its faithful recapitulation of human pancreatic cancer biology Hu et al. (2019); Renz et al. (2018);
Niknafs et al. (2019). Indeed, KPC PDACs provide a unique opportunity to analyze the evolution of
cancer in a controlled setting, not otherwise possible in human patients. The study involved two
double-blind studies on ex vivo pancreas of mice. In Study 1, the biomarker was tested in n=26
mice (15 KPC, 2KC, and 9 controls), in Study 2 we determined the biomarker ability to differentiate
PC from acute pancreatitis (AP), considering n=24 (18 cerulein-induced AP and 6 saline-injected
controls) (Figure 1).
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Figure 1. Study design.

The CRF measurements were collected at different locations on the pancreatic sample and CRF
determinations allowed to calculate sensitivity and specificity against histopathology outcomes.
As far as Study 1 is concerned, based on histopathology, 12 KPC pancreases were confirmed as
cancerous, 9 controls were confirmed as noncancerous, while 5 pancreases (3 KPC and 2 KC) pre-
sented with pancreatic intraepithelial neoplasia (PanIN), a precancerous condition. Examples of
CRF curves for noncancerous, precancerous, and cancerous samples are provided in Figure 2.
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Figure 2. Example CRF curves from noncancerous (NC), precancerous (PreCA), and cancerous (CA) mice
pancreases.

The CRF biomarker identified 4 out of 5 PanIN samples as cancerous. Considering the entire
cohort for Study 1 (n=26), specificity and sensitivity were 100% and 94%, respectively. The sam-
ple determinations based on the CRF biomarker are reported in Table 1. If PanIN samples were
excluded, specificity and sensitivity were both 100% (n=21). The Spearman correlation coefficient
between percent fibrosis and CRF was r(15)= 0.82 (p <0.001), which indicates a strong positive cor-
relation (Figure 3).

Histology Assessment

Biomarker
Assessment

Table 1. Confusion matrix for Study 1. NC: noncancerous; CA: cancerous; PreCA: precancerous.
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Figure 3. Spearman correlation between percent fibrosis and CRF for noncancerous, cancerous, and
precancerous pancreases. Grey band shows the 99.99% confidence interval.
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Discussion

This study found specificity and sensitivity of 100% and 94%, respectively, of the bioimpedance
based biomarker in discerning between cancerous and noncancerous pancreas tissues from mice.
Moreover, all pancreatitis samples were detected as noncancerous. The findings also determined
a strong positive correlation between CRF biomarker and percent fibrosis in cancerous and precan-
cerous samples. This feasibility study demonstrates the potential for the use of the CRF to predict
PC and the level of fibrosis in PC. The identification of malignant precursors for PanIN samples in-
dicates the biomarker capability to detect early-stage PCs. The biomarker was found to be strong
against the confounding factor of pancreatitis, demonstrating that the CRF can decipher PC from
normal and acute pancreatitis tissues making it an ideal clinical detection tool.

The positive correlation between CRF biomarker and pathologically analyzed cancer induced
fibrosis in PC may be similar to that shown in breast cancer Gregory et al. (2020). Gregory et. al
Gregory et al. (2020) previously reported using the CRF biomarker as a prognostic indicator for
the aggressiveness of breast cancer. In that retrospective study, a strong correlation was found
between the CRF values of tumor excisions measured at time of surgery and long term patient
outcomes in terms of recurrence or time-cancer-free Gregory et al. (2020). According to their find-
ing, when the CRF is below 5.3 log(Hz) it is likely that the cancer is nonrecurrent; when the CRF is
in the range between 5.3 log(Hz) and 5.8 log(Hz) there is a high likelihood that cancer is recurrent
not metastasizing; and when the CRF is above 5.8 log(Hz) then there is an increasingly greater like-
lihood that the cancer is recurrent with metastasis (see Figure 4) Gregory et al. (2020). A similar
behavior was observed for the pacreatic tissues data presented in this currect study (see Figure
3). These findings suggest that the CRF may well be a universal property of cells as they transform
regardless of organ origin and that the CRF biomarker may be studied as a prognostic indicator.
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Figure 4. Gregory et al. Gregory et al. (2020) have showed that the CRF biomarker can retrospectively classify
breast cancer data in 3 well-differentiated categories: nonrecurrent (NR); recurrent with no metastasis (RNM);
and recurrent with metastasis (RM).

Once proven to be effective in a larger preclinical and clinical trial, the CRF based technology
could be implemented into a medical device for clinical use. Indeed, the electrodes used to mea-
sure the bioimpedance could be developed into a rapid onsite evaluation device that would be
used as an ex vivo decision support tool for real-time quantitative assessment of biopsy samples.
Another future development can be seen in the implementation of the measuring electrodes on
the tip of an endoscopic device for in vivo clinical use to assist endoscopists in the decision-making
process and to guide them in margin assessment and biopsies acquisition.

This study is not without limitations. We expect some level of variability when transferring
these results to a clinical trial. A larger sample size could allow for a deeper understanding of
the potential use of the biomarker for early detection of PC. This study did not include chronic
pancreatitis samples, however a standard model for this disease is already available and will be
included in a future study by the group.

Methods and Materials

Background

Several studies Qiao et al. (2010); Han et al. (2007); Gregory et al. (2012); Svoboda et al. (2018);
Shell and Gregory (2017); Gabriel et al. (1996) have demonstrated that different tissue types and
cells behaviors, including cancer, can be identified by measuring frequency dependent bioelectri-
cal properties. The cellmembrane behaves like an electrical capacitor in that a charge (ion) brought
up to the outside of the membrane causes charges of the opposite sign to deploy on the interior
face of the membrane. This process then stores equal amounts of electrical charge of opposite
sign on each side of the membrane. However, this charge can be neutralized by charges flow-
ing in the opposite direction through resistive paths between the inside and outside of the cell
membrane. Some possible paths are via proteins embedded in the membrane; further paths are
possible by a split of the current passing through the cell or around the cell. The behavior of the
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cell membrane has been described with the circuit diagram (Cole-Cole model). Current passing
through the extracellular matrix encounters only resistive impedance to the current flow, as does
the current passing through the proteins in the membrane wall with current passing around the
cell. A portion of the current also passes through the capacitive membrane, and this has a complex
behavior that can be mathematically modeled. The characteristic rate at which a cell redistributes
electrical charge on and off the cell membrane, so that the charge gets equilibrated, is called Cole
Relaxation Frequency (CRF). By examining the transmembrane cellular response in the frequency
range of 1 KHz to 10 MHz, also known as the g region, cancerous tissues can be detected. To char-
acterize spectral bioimpedance measurements, Novascan has developed an algorithm that utilizes
the equivalent circuit proposed by Cole et al. Cole and Cole (1941). The circuit is described by the

. . ’ - R() - Rm . .
following equation: Z =2+ jZ =R+ 7 ,Where Z is the complex sample impedance,
1+ (=)
+UCRF)

Z isthereal, and Z' is the imaginary component of Z, R, and R_, respectively represent the low and
high frequency limits of Z, f is the measurement frequency, CRF is the Cole Relaxation Frequency, j
is the imaginary unit and « is a dimensionless number that is inversely related to the broadening in
the frequency domain of Z, and the spread of the peak seen in - Z'. The algorithm extracts the CRF
that is used as an impedance spectroscopy biomarker to detect cancer. NovaScan has established
proof-of-concept technologies to detect cancer in breast Gregory et al. (2012, 2020), skin Svoboda
et al. (2018), and lung Bogdanowicz et al. (2022); Guidetti et al. (2022) tissues. Moreover, for each
tissue kind, NovaScan has developed customized prototype devices that have been tested and val-
idated ex vivo Gregory et al. (2012); Svoboda et al. (2018); Bogdanowicz et al. (2022); Guidetti et al.
(2022). We based the feasibility of the current work on these previous studies and on the work by
Subramanian et al., which illustrated cell architecture derangement across tumor formation, fur-
ther explaining the physical foundation of CRF deviations observed for cancer Subramanian et al.
(2009).

Mouse Model

The KPC (Pdx1-Cre/LSL-Kras®'2P/LSL-p53R172H) murine model is the most employed in vivo preclin-
ical tool for studying PC. Mutations in both endogenous KrasG12D (K) and p53R172H (P) alleles
accompanied by the Lox-STOP-Lox (LSL) insert are simultaneously expressed following Cre (C) in-
duction regulated by the Pdx1 promoter. The phenotypic result triggers the initiation of a high
frequency of Pancreatic Intraepithelial Neoplasia (PanIN) lesions that can progress to pancreatic
ductal adenocarcinoma (PDAC) Hu et al. (2019). In order to avoid variance in observations from
chimeric strains, KPC mice in the B6 strain background develop PanINs at 4-5 weeks, local invasive
cancer at 10-12 weeks and more advanced disease at 16-22 weeks, with metastasis in 40% of spec-
imens. The KPC mouse model is among the most commonly used models for studying PDAC due
to its faithful recapitulation of human pancreatic cancer biology Hu et al. (2019); Renz et al. (2018);
Niknafs et al. (2019); Gabriel et al. (2020); Vernucci et al. (2019). A timely study of the prognostic
value of CRF would be challenging with human tissue ex vivo (5-10 yr study) and almost impossible
in vivo. KPC PDACs provide a unique opportunity to study the evolution of cancer in a controlled
setting, not otherwise possible in human patients.

Study Design and Methods

We evaluated the biomarker in a double blind study on ex vivo pancreases of mice. An initial study
included 15 K-ras;Trp53;Pdx-1-Cre, 2 K-ras;Pdx-1-Cre, and 9 wild type controls; to determine if the
biomarker could distinguish between PC and acute pancreatitis (AP), in a secondary study we chal-
lenged it with 18 cerulein-induced AP (3 groups at 24, 48, 72 hours, n=6 for each group) and 6
saline-injected controls. All tests were performed in multiple locations of the pancreases using a
custom-built bioelectrical impedance measurement device and tetrapolar electrodes. The tetrap-
olar configuration is comprised of 4 electrodes including a source electrode (for the generation
of the stimulating high-frequency signal), a drain electrode (for the measurement of the current
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NovaScan

Figure 5. Bioimpedance spectroscopy scanning device with measurement electrode array used for a series of
spectral bioimpedance measurements. A zoom in of the electrode with a pancreas sample is also shown.

through a precision 50 Ohm shunt resistor), and two pick up electrodes placed between the source
and the drain (for the measurement of the voltage drop across the tissue). The device performed a
bioelectrical impedance measurement of the samples over a frequency range of 1 KHz to 20 MHz.
The measurements of the biological sample were done using an analog heterodyne-type circuit
in which the measured high frequency signals from each electrode were demodulated to a low-
frequency signal that was then sampled by analog-to-digital converters (ADC). This information
was processed further by a micro-controller to extract the magnitude and phase of the measured
voltages as complex numbers. The impedance was then computed as the complex ratio between
the voltage drop across the pick-up electrodes and current passed through the drain electrode.
The impedance values were then sent to a PC where they were displayed in their Real and Imagi-
nary components for further analysis and determination of the Cole Relaxation Frequencies (CRF).
An array of electrodes was used to map the tissue samples. The electrode array was manufactured
on a standard PCB featuring 400 1x4mm cupper pads spaced by 0.5 mm, finished by immersion
silver and chlorination to function as Ag/AgCl electrodes. The electrodes are electrically connected
to contact pads on the back side of the PCB through vias. An XYZ motorized stage was used to
move four pogo pins to make contacts to back-side contact pads. Each pogo pin is connected to
the custom-made electronics for impedance measurement as described above. A custom GUI al-
lowed for the synchronously motion the XYZ and recording the impedance at each location of the
sample in order to build an impedance map.

Cancer determination was made when the CRF parameter was measured above 1 MHz (Figure
1). All samples were processed by standard histopathology after bioimpedance testing. Sensitiv-
ity and specificity of CRF based outcomes were determined against histopathology outcomes as
ground truth. During histopathology pancreases were also assessed for percent fibrosis averaging
over multiple fields of view. Spearman'’s correlation was used to determine if there was any corre-
lation between percent fibrosis and CRF. An a priori a-value was set at 0.01 to indicate statistical
significance. All statistical analyses were performed in R.
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